Gender Differences at Critical Transitions in the Careers of Science, Engineering, and Mathematics Faculty presents new and surprising findings about career differences between female and male full-time, tenure-track, and tenured faculty in science, engineering, and mathematics at the nation's top research universities. Much of this congressionally mandated book is based on two unique surveys of faculty and departments at major U.S. research universities in six fields: biology, chemistry, civil engineering, electrical engineering, mathematics, and physics. A departmental survey collected information on departmental policies, recent tenure and promotion cases, and recent hires in almost 500 departments. A faculty survey gathered information from a stratified, random sample of about 1,800 faculty on demographic characteristics, employment experiences, the allocation of institutional resources such as laboratory space, professional activities, and scholarly productivity. This book paints a timely picture of the status of female faculty at top universities, clarifies whether male and female faculty have similar opportunities to advance and succeed in academia, challenges some commonly held views, and poses several questions still in need of answers. This book will be of special interest to university administrators and faculty, graduate students, policy makers, professional and academic societies, federal funding agencies, and others concerned with the vitality of the U.S. research base and economy.
Summary

The 1999 report, *A Study on the Status of Women Faculty in Science at MIT*, created a new level of awareness of the special challenges faced by female faculty in the sciences. Although not the first examination of the treatment of female faculty, this report marked an important historical moment, igniting interest in the difficulties experienced by many women, particularly those at the higher levels of academia. Since the release of the Massachusetts Institute of Technology report, many other institutions have studied equity issues regarding their faculty, and several have publicly pledged to use their resources to correct identified disparities. Although academic departments, institutions, professional societies, and others have paid more attention to the topic in the past 10 years, some experts are concerned that remedial actions have approached a plateau.

Unquestionably, women’s participation in academic science and engineering (S&E) has increased over the past few decades. In the 10 years prior to the start of this study, the number of women receiving Ph.D.s in science and engineering increased from 31.7 percent (in 1996) to 37.7 percent (in 2005). The percentage of women among doctoral scientists and engineers employed full-time, while still small, rose from 17 percent in 1995 to 22 percent in 2003. However, women continued to be underrepresented among academic faculty relative to the number receiving S&E degrees. In 2003, women comprised between 18 and 45 percent of assistant professors in S&E and between 6 and 29 percent of associate and full professors.

In 2002, Senator Ron Wyden (D-Oregon) of the Subcommittee on Science, Technology and Space of the U.S. Senate Committee on Commerce, Science and Transportation, convened three hearings on the subject of women studying and working in science, mathematics, and engineering. Soon after, Congress directed
the National Science Foundation (NSF) to contract with the National Academies for a study assessing gender differences in the careers of science and engineering faculty, based on both existing and new data. The study committee was given the following charge:

Assess gender differences in the careers of science, engineering, and mathematics (SEM) faculty, focusing on four-year institutions of higher education that award bachelor’s and graduate degrees. The study will build on the Academy’s previous work and examine issues such as faculty hiring, promotion, tenure, and allocation of institutional resources including (but not limited to) laboratory space.

The committee interpreted its charge to imply three tasks: (1) update earlier analyses, (2) identify and assess current gender differences, and (3) recommend methods for expanding knowledge about gender in academic careers in science and engineering. It developed a series of guiding research questions in three key areas to organize its investigation: (1) academic hiring, (2) institutional resources and climate, and (3) tenure and promotion.

The committee also limited its exploration of science and engineering to the natural sciences and engineering, defined here as the physical sciences (including astronomy, chemistry, and physics); earth, atmospheric, and ocean sciences; mathematics and computer science; biological and agricultural sciences; and engineering (in all its forms).

FACULTY AND DEPARTMENTAL SURVEYS

Recognizing at the outset the need for new data, the committee conducted two national surveys in 2004 and 2005 of faculty and academic departments in six science and engineering disciplines: biology, chemistry, civil engineering, electrical engineering, mathematics, and physics. The first survey of almost 500 departments focused on hiring, tenure, and promotion processes, while the second survey gathered career-related information from more than 1,800 faculty. Together the surveys addressed departmental characteristics, hiring, tenure, promotion, faculty demographics, employment experiences, and types of institutional support received. In addition to results from the surveys, the committee heard expert testimony, examined data from NSF, the National Center for Education Statistics (NCES), and professional societies, and reviewed the results of individual university studies and research publications.

As it would be impossible to survey all “science, engineering, and mathematics (SEM) faculty at four-year institutions of higher education,” the committee limited the scope of the surveys in four important ways. These limitations must be kept in mind in the interpretation of the survey results:

1. The data present a snapshot in time (2004 and 2005), not a longitudinal view.
SUMMARY

2. Six disciplines are examined: biology, chemistry, civil engineering, electrical engineering, mathematics, and physics.

3. Institutions are limited to major research universities, referred to as Research I or research-intensive (RI) institutions.

4. Only full-time, regularly appointed professorial faculty who are either tenure eligible or tenured are included.

In other words, except in its review of historical data and existing research, the report does not examine gender differences outside of the six disciplines covered in the surveys or at institutions other than RI institutions. It also does not examine the careers of instructors, lecturers, postdocs, adjunct faculty, clinical faculty, or research faculty, who may experience very different career paths.

Many of the “whys” of the findings included here are buried in factors that the committee was unable to explore. We do not know, for example, what happens to the significant percentage of female Ph.D.s in science and engineering who do not apply for regular faculty positions at RI institutions, or what happens to women faculty members who are hired and subsequently leave the university. And we know little about female full professors and what gender differences might exist at this stage of their careers.

We do know that there are many unexplored factors that play a significant role in women’s academic careers, including the constraints of dual careers; access to quality child care; individuals’ perceptions regarding professional recognition and career satisfaction; and other quality-of-life issues. In particular, the report does not explore the impact of children and family obligations (including elder care) or the duration of postdoctoral positions on women’s willingness to pursue faculty positions in RI institutions.

COMPARISONS TO OTHER NATIONAL ACADEMIES’ REPORTS

This report does not exist in isolation. The committee has benefited greatly from three other National Academies’ reports on women in academic science and engineering. In 2001 the Committee on Women in Science and Engineering (CWSE) published From Scarcity to Visibility: Gender Differences in the Careers of Doctoral Scientists and Engineers, a statistical analysis of the career progression of matched cohorts of men and women Ph.D.s from 1973 to 1995. The 2005 CWSE report, To Recruit and Advance: Women Students and Faculty in U.S. Science and Engineering, identifies the strategies that higher education institutions have employed to achieve gender inclusiveness, based on case studies of four successful universities.

A third report, Beyond Bias and Barriers: Fulfilling the Potential of Women in Academic Science and Engineering, was released in 2006 under the aegis of the Committee on Science, Engineering, and Public Policy (COSEPUP). The study committee was charged to “review and assess the research on sex and gender issues
in science and engineering, including innate differences in cognition, implicit bias, and faculty diversity” and “provide recommendations... on the best ways to maximize the potential of women science and engineering researchers.” The committee considered all fields of science and engineering (including the social sciences) in a broad range of academic institutions, relying primarily on existing data and the experience and expertise of committee members. Its report provides broad policy recommendations for changes at higher education institutions.

In contrast, the current report examines new information on the career patterns of men and women faculty at RI institutions—with particular focus on key transition points that are under the control of the institutions. The findings and recommendations here are based primarily on the data from our two surveys, which were not available to the COSEPUP committee.

Like the COSEPUP committee, this committee found evidence of the overall loss of women’s participation in academia. That loss is most apparent in the smaller fraction of women who apply for faculty positions and in the attrition of women assistant professors before tenure consideration. Unfortunately, our surveys do not shed light on why women fail to apply for faculty positions or why they may leave academia between these critical transition points—underscoring the fact that our work is not done.

Our survey findings do indicate that, at many critical transition points in their academic careers (e.g., hiring for tenure-track and tenured positions and promotions), women appear to have fared as well as or better than men in the disciplines and type of institutions (RI) studied, and that they have had comparable access to many types of institutional resources (e.g., start-up packages, lab space, and research assistants). These findings are in contrast to the COSEPUP committee’s general conclusions that “women who are interested in science and engineering careers are lost at every educational transition” and that “evaluation criteria contain arbitrary and subjective components that disadvantage women.”

After providing a brief overview of the Status of Women in Academic Science and Engineering in 2004 and 2005 in Chapter 2, the report presents the results of the survey findings in the three areas: Academic Hiring (Chapter 3), Climate, Institutional Resources, Professional Activities, and Outcomes (Chapter 4), and Tenure and Promotion (Chapter 5). Chapter 6 provides an overall summary of key findings and recommendations, including questions for future research.

KEY FINDINGS

The surveys of academic departments and faculty have yielded interesting and sometimes surprising findings. For the most part, men and women faculty in science, engineering, and mathematics have enjoyed comparable opportunities within the university, and gender does not appear to have been a factor in a number of important career transitions and outcomes. The findings below provide key insights on gender differences in Academic Hiring (Chapter 3), Climate,
SUMMARY

Institutional Resources, Professional Activities, and Outcomes (Chapter 4), and Tenure and Promotion (Chapter 5). Complete findings in each of these areas can be found at the end of the relevant chapter and are summarized in Chapter 6.

As a foundation for understanding the survey findings, it is important to remember that although women represent an increasing share of science, mathematics, and engineering faculty, they continue to be underrepresented in many of those disciplines. While the percent of women among faculty in scientific and engineering overall increased significantly from 1995 through 2003, the degree of representation varied substantially by discipline, and there remained disciplines where the percentage of women was significantly lower than the percentage of men. Table S-1 shows the percent of women faculty in selected scientific and engineering disciplines during this time period at the assistant, associate, and full professor levels.

In 2003, women comprised 20 percent of the full-time employed S&E workforce and had slowly gained ground compared to men in the full-time academic workforce; by 2003, they represented about 25 percent of academics. Women’s representation in the academic workforce, of course, varied by discipline: in the health sciences, women were the majority of full-time, employed doctorates, while in engineering they were less than 10 percent. The greatest concentration of women among full-time academics was at medical schools; the lowest was at Research II institutions.

Academic Hiring (Chapter 3)

The findings on academic hiring suggest that many women fared well in the hiring process at Research I institutions, which contradicts some commonly held perceptions of research-intensive universities. If women applied for positions at Research I institutions, they had a better chance of being interviewed and receiving offers than male job candidates had. Many departments at Research I institutions, both public and private, have made an effort to increase the numbers and percentages of female faculty in science, engineering, and mathematics. Having women play a visible role in the hiring process, for example, has clearly made a difference. Unfortunately, women continue to be underrepresented in the applicant pool, relative to their representation among the pool of recent Ph.D.s. Institutions may not have effective recruitment plans, as departmental efforts targeted at women were not strong predictors in these surveys of an increased percentage of women applicants.

1. Women accounted for about 17 percent of applications for both tenure-track and tenured positions in the departments surveyed. In each of the six disciplines, the percentage of applications from women for tenure-track positions was lower than the percentage of Ph.D.s awarded to women. (Findings 3-1 and 3-3)
TABLE S-1 Representation of Women in Faculty Positions at Research I Institutions by Rank and Field (percent), 1995-2003

<table>
<thead>
<tr>
<th>Field</th>
<th>Assistant Professor</th>
<th>Associate Professor</th>
<th>Full Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>17.8</td>
<td>18.6</td>
<td>19.6</td>
</tr>
<tr>
<td>Biology</td>
<td>35.6</td>
<td>38.2</td>
<td>36.0</td>
</tr>
<tr>
<td>Engineering</td>
<td>14.2</td>
<td>12.7</td>
<td>12.8</td>
</tr>
<tr>
<td>Health Sciences</td>
<td>69.1</td>
<td>66.9</td>
<td>64.0</td>
</tr>
<tr>
<td>Mathematics</td>
<td>18.7</td>
<td>22.0</td>
<td>26.5</td>
</tr>
<tr>
<td>Physics</td>
<td>25.1</td>
<td>25.6</td>
<td>24.6</td>
</tr>
</tbody>
</table>

SUMMARY

Table S-2 shows the percentage of women in the pool at each of several key transition points in academic careers: award of Ph.D., application for position, interview, and job offer. Although there was wide variation by field and department in the number and percentage of female applicants for faculty positions, the percentage of applications from women in each discipline was lower than the percentage of doctoral degrees awarded to women. This was particularly the case in chemistry and biology, the two disciplines in the study with the highest percentage of female Ph.D.s. The mean percentage of female applicants for tenure-track positions in chemistry was 18 percent, but women earned 32 percent of the Ph.D.s in chemistry from Research I institutions from 1999-2003. Biology (26 percent in the tenure-track pool and 45 percent in the doctoral pool) also showed a significant difference.

The fields with lower percentages of women in the Ph.D. pool had a higher propensity for those women to apply. Electrical engineering (11 percent in the tenure-track pool and 12 percent in the doctoral pool), mathematics, and physics, for example, had modest decreases in the applicant pool.

The percentage of applicant pools that included at least one woman was substantially higher than would be expected by chance. However, there were no female applicants (only men applied) for 32 (6 percent) of the available tenure-track positions and 16 (16.5 percent) of the tenured positions.

2. The percentage of women who were interviewed for tenure-track or tenured positions was higher than the percentage of women who applied. (Finding 3-10)

TABLE S-2 Transitions from Ph.D. to Tenure-Track Positions by Field at the Research I Institutions Surveyed (percent)

Field	Doctoral Pool	Pools for Tenure-Track Positions	Mean percent of	Mean percent of	Mean percent of
---------------------	---------------	----------------------------------	applicants who	applicants invited	first offers
	Percent women		are women	to interview	that go to
	Ph.D.s (1999-2003)			who are women	women
Biology	45	26	28	34	
Chemistry	32	18	25	29	
Civil Engineering	18	16	30	32	
Electrical Engineering	12	11	19	32	
Mathematics	25	20	28	32	
Physics	14	12	19	20	

SOURCE: Survey of departments carried out by the Committee on Gender Differences in Careers of Science, Engineering, and Mathematics Faculty; Ph.D. data is from NSF, WebCASPAR.
For each of the six disciplines in this study the mean percentage of females interviewed for tenure-track and tenured positions exceeded the mean percentage of female applicants. For example, the female applicant pool for tenure-track positions in electrical engineering was 11 percent, and the corresponding interview pool was 19 percent.

3. The percentage of women who received the first job offer was higher than the percentage who were invited to interview. (Finding 3-13)

For all disciplines the percentage of tenure-track women who received the first job offer was greater than the percentage in the interview pool. For example, women were 19 percent of the interview pool for tenure-track electrical engineering positions and received 32 percent of the first offers. This finding was also true for tenured positions with the notable exception of biology, where the interview pool was 33 percent female and women received 22 percent of the first job offers.

4. Most institutional and departmental strategies for increasing the percentage of women in the applicant pool were not effective as they were not strong predictors of the percentage of women applying. The percentage of women on the search committee and whether a woman chaired the search, however, did have a significant effect on recruiting women. (Findings 3-7 and 3-8)

Departments have not generally been aggressive in using special strategies to increase the gender diversity of the applicant pool. Most of the policy steps proposed to increase the percentage of women in the applicant pool (such as targeted advertising, recruiting at conferences, and contacting colleagues at other institutions) were done in isolation, with almost two-thirds of the departments in our sample reporting that they took either no steps or only one step to increase the gender diversity of the applicant pool.

It appears that women were more likely to apply for a position if a woman chaired the search committee. The percentage of females on the search committee and whether a woman chaired the committee were both significantly and positively associated with the proportion of women in the applicant pool.

Professional Activities, Climate, Institutional Resources, and Outcomes
(Chapter 4)

The survey findings with regard to climate and resources demonstrate two critical points. First, discipline matters, as indicated by the difference in the amount of grant funding held by men and women faculty in biology, but not in other disciplines. Second, institutions have been doing well in addressing most
SUMMARY

of the aspects of climate that they can control, such as start-up packages and reduced teaching loads. Where the challenge may remain is in the climate at the departmental level. Interaction and collegial engagement with one’s colleagues is an important part of scientific discovery and collaboration, and here women faculty were not as connected.

5. Male and female faculty appeared to have similar access to many kinds of institutional resources, although there were some resources for which male faculty seemed to have an advantage. (Findings 4-1 through 4-5)

Survey data revealed a great deal of similarity between the professional lives of male and female faculty. In general, men and women spent similar proportions of their time on teaching, research, and service; male faculty spent 41.4 percent of their time on teaching, while female faculty spent 42.6 percent. Male and female faculty members reported comparable access to most institutional resources, including start-up packages, initial reduced teaching loads, travel funds, summer salary, and supervision of similar numbers of research assistants and postdocs.

Men appeared to have greater access to equipment needed for research and to clerical support. At first glance, men seemed to have more lab space than women, but this difference disappeared once other factors such as discipline and faculty rank were accounted for.

6. Female faculty reported that they were less likely to engage in conversation with their colleagues on a wide range of professional topics. (Findings 4-6, 4-7, and 4-8)

There were no differences between male and female faculty on two of our measures of inclusion: chairing committees (39 percent for men and 34 percent for women) and being part of a research team (62 percent for men and 65 percent for women). And although women reported that they were more likely to have mentors than men (57 percent for tenure-track female faculty compared to 49 percent for men), they were less likely to engage in conversation with their colleagues on a wide range of professional topics, including research, salary, and benefits (and, to some extent, interaction with other faculty members and departmental climate). This distance may prevent women from accessing important information and may make them feel less included and more marginalized in their professional lives. The male and female faculty surveyed did not differ in their reports of discussions with colleagues on teaching, funding, interaction with administration, and personal life.

7. There is little evidence across the six disciplines that men and women have exhibited different outcomes on most key measures (include-
Gender Differences at Critical Transitions in the Careers of Science, Engineering, and Mathematics Faculty
http://books.nap.edu/catalog/12062.html

GENDER DIFFERENCES IN FACULTY CAREERS

Findings

ing publications, grant funding, nominations for international and national honors and awards, salary, and offers of positions in other institutions). The exception is publications, where men had published more than women in five of the six disciplines. On all measures, there were significant differences among disciplines. (Findings 4-9 through 4-14)

Overall, male faculty published marginally more refereed articles and papers in the past 3 years than female faculty, except in electrical engineering, where the reverse was true. Men published significantly more papers than women in chemistry (men: 15.8; women: 9.4) and mathematics (men: 12.4; women: 10.4). In electrical engineering, women published marginally more papers than men (men: 5.8; women: 7.5). The differences in the number of publications between men and women were not significant in biology, civil engineering, and physics.

There were no significant gender differences in the probability that male or female faculty would have grant funding, i.e., be a principal investigator or co-principal investigator on a grant proposal. Male faculty had significantly more research funding than female faculty in biology; the differences were not significant in the other disciplines.

Female assistant professors who had a mentor had a higher probability of receiving grants than those who did not have a mentor. In chemistry, female assistant professors with mentors had a 95 percent probability of having grant funding compared to 77 percent for those women without mentors. Over all six fields surveyed female assistant professors with no mentors had a 68 percent probability of having grant funding compared to 93 percent of women with mentors. This contrasts with the pattern for male assistant professors; those with no mentor had an 86 percent probability of having grant funding compared to 83 percent for those with mentors.

Male and female faculty were equally likely to be nominated for international and national honors and awards, although the results varied significantly by discipline. Gender was a significant determinant of salary among full professors; male full professors made, on average, about 8 percent more than females, once we controlled for discipline. At the associate and assistant professor ranks, the differences in salaries of men and women faculty disappeared.

Tenure and Promotion (Chapter 5)

The findings related to tenure and promotion indicate the importance of addressing the retention of women faculty in the early stages of their academy careers; not as many were considered for tenure as would be expected, based on the number of women assistant professors. Retention was particularly problematic given the increased duration of time in rank for all faculty. Both male and female faculty utilized stopping-the-tenure-clock policies—spending a longer time in

Copyright National Academy of Sciences. All rights reserved.
This summary plus thousands more available at http://www.nap.edu
SUMMARY

In every field, women were underrepresented among candidates for tenure relative to the number of female assistant professors. Most strikingly, women were most likely to be underrepresented in the fields in which they accounted for the largest share of the faculty—biology and chemistry. (Finding 5-1)

In biology and chemistry, the differences were statistically significant. In biology, 27 percent of the faculty considered for tenure were women, while women represented 36 percent of the assistant professor pool. In chemistry those numbers were 15 percent and 22 percent, respectively. This difference may suggest that female assistant professors were more likely than men to leave before being considered for tenure. It might also reflect the increased hiring of female assistant professors in recent years (compared with hiring 6 to 8 years ago).

Women were more likely than men to receive tenure when they came up for tenure review. (Findings 5-2, 5-3, and 5-4)

In each of the six fields surveyed, women were tenured at the same or a higher rate than men (an overall average of 92 percent for women and 87 percent for men). It appears that women were more likely to be promoted when there was a smaller percentage of females among the tenure-track faculty. Discipline, stop-the-tenure-clock policies, and departmental size were not associated with the probability of a positive tenure decision for either male or female faculty members who were considered for tenure. Both male and female assistant professors were significantly more likely to receive tenure at public institutions (92 percent) than at private institutions (85 percent).

No significant gender disparity existed at the stage of promotion to full professor. (Findings 5-6 and 5-7)

For the six disciplines surveyed, 90 percent of the men and 88 percent of the women proposed for full professorship were promoted—a difference that was not statistically significant, after accounting for other potentially important factors such as disciplinary differences, departmental size, and use of stopping-the-tenure-clock policies. Women were proposed for promotion to full professor at approximately the same rates as they were represented among associate professors.
11. Women spent significantly longer time in rank as assistant professors than did men. (Findings 5-8 and 5-9)

Although time in rank as an assistant professor has increased over time for both men and women, women showed significantly longer durations than men. It is difficult to determine whether these apparent differences may be explained, at least in part, by individual and departmental characteristics such as length of postdoctoral experience and stopping-the-tenure-clock for family leave. Both male and female faculty spent more time in the assistant professor ranks at institutions of higher prestige.

12. Male and female faculty who stopped the tenure clock spent significantly more time as assistant professors than those who did not (an average of 74 months compared to 57 months). They had a lower chance of promotion to associate professor (about 80 percent) at any time (given that they had not been promoted until then) than those who did not stop the clock. Everything else being equal, however, stopping the tenure clock did not affect the probability of promotion and tenure; it just delayed it by about 1.5 years. It is unclear how that delay affected women faculty, who were more likely than men to avail themselves of this policy. (Finding 5-10)

Although the effect of stopping the tenure clock on the probability of promotion and tenure is similar for both male and female faculty, 19.7 percent of female assistant professors in the survey sample availed themselves of this policy compared to 7.4 percent of male assistant professors. At the associate professor level, 10.2 percent of female faculty compared to 6.4 percent of male faculty stopped the tenure clock.

RECOMMENDATIONS

The survey data suggest that positive changes have happened and continue to occur. At the same time, the data should not be mistakenly interpreted as indicating that male and female faculty in math, science, and engineering have reached full equality and representation, and we caution against premature complacency. Much work remains to be done to accomplish full representation of men and women in academic departments.

Many of the survey findings point out specific areas in which research institutions and professional societies can enhance the likelihood that more women will apply to faculty positions and persist in academia up to and beyond tenure and promotion. Changes in the faculty recruitment and search process, enhancement of mentoring programs, broader dissemination of tenure and stop-the-tenure-clock policies, and investigation of the subtle effects of climate on career decisions can all...
help. Increased data collection, of course, is also necessary. Specific recommendations for institutions and professional societies are delineated in Chapter 6.

QUESTIONS FOR FUTURE RESEARCH

This study raises many unanswered questions about the status of women in academia. As noted at the onset of this report, the surveys did not capture the experiences of Ph.D.s who have never applied for academic positions, nor of female faculty who have left at various points in their academic careers. We also recognize that there are important, nonacademic issues affecting men and women differentially that impact career choices at critical junctures. Fuller examination of these issues (for example, topics relating to family, children, home life, care of elderly parents) will shed greater light on career choices by women and men and should yield suggestions on the types of support needed to encourage retention of women in academic careers. Below are suggestions for future research:

A Deeper Understanding of Career Paths

1. Using longitudinal data, what are the academic career paths of women in different science and engineering disciplines from receipt of their Ph.D. to retirement?
2. Why are women underrepresented in the applicant pools and among those who are considered for tenure?
3. Why aren’t more women in fields such as biology and chemistry applying to Research I tenure-track positions, as discussed in Finding 3-3?
4. Why do female faculty, compared to their male counterparts, appear to continue to experience some sense of isolation in more subtle and intangible areas?
5. What is the impact of stop-the-tenure-clock policies on faculty careers?
6. What are the causes for the attrition of women and men prior to tenure decisions, if indeed attrition does take place?
7. To what extent are women faculty rewarded beyond promotion to full professor?
8. What important, nonacademic issues affect men and women differentially that impact their career choices at critical junctures?

Expanding the Scope

9. How important are differences among fields?
10. What are the experiences of faculty at Research II institutions?
11. What are the experiences of part-time and nontenure track faculty?
GENDER DIFFERENCES AT CRITICAL TRANSITIONS IN THE CAREERS OF SCIENCE, ENGINEERING, AND MATHEMATICS FACULTY

Committee on Gender Differences in Careers of Science, Engineering, and Mathematics Faculty

Committee on Women in Science, Engineering, and Medicine

Policy and Global Affairs

Committee on National Statistics

Division of Behavioral and Social Sciences and Education

NATIONAL RESEARCH COUNCIL
OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS
Washington, D.C.
www.nap.edu
THE NATIONAL ACADEMIES
Advisers to the Nation on Science, Engineering, and Medicine

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Charles M. Vest is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and vice chair, respectively, of the National Research Council.

www.national-academies.org
COMMITTEE ON GENDER DIFFERENCES IN CAREERS OF SCIENCE, ENGINEERING, AND MATHEMATICS FACULTY

Claude R. Canizares, Co-Chair, Vice President for Research and Associate Provost and Bruno Rossi Professor of Experimental Physics, Massachusetts Institute of Technology
Sally E. Shaywitz, Co-Chair, Audrey G. Ratner Professor in Learning Development and Co-Director, Yale Center for Dyslexia and Creativity, School of Medicine, Yale University
Linda Abriola, Dean of Engineering, Tufts University
Jane Buikstra, Regents’ Professor, Arizona State University School of Human Evolution and Social Change
Alicia Carriquiry, Professor of Statistics, Iowa State University
Ronald Ehrenberg, Director, Cornell Higher Education Research Institute and Irving M. Ives Professor of Industrial and Labor Relations and Economics, Cornell University
Joan Girgus, Professor of Psychology and Special Assistant to the Dean of the Faculty, Princeton University
Arleen Leibowitz, Professor of Public Policy, School of Public Affairs, University of California at Los Angeles
Thomas N. Taylor, Distinguished Professor, Department of Ecology and Evolutionary Biology and Biodiversity Research Institute, University of Kansas
Lilian Wu, Program Executive, Global University Relations, IBM Technology Strategy and Innovation

Study Staff

Catherine Didion, Study Director (from September 1, 2007)
Peter Henderson, Study Director (from October 15, 2005 until August 31, 2007)
Jong-on Hahn, Study Director (through October 14, 2005)
Constance F. Citro, Director, Committee on National Statistics
Michael L. Cohen, Senior Program Officer
John Sislin, Program Officer
Elizabeth Briggs, Senior Program Associate
Elizabeth Scott, Project Assistant
Jessica Buono, Research Associate
Jacqueline Martin, Senior Program Assistant

1 Cathleen Synge Morawetz, Professor Emerita, the Courant Institute of Mathematical Sciences, New York University and Yu Xie, Frederick G. L. Huetwell Professor of Sociology, University of Michigan resigned their committee appointments in 2004.
COMMITTEE ON WOMEN IN SCIENCE,
ENGINEERING, AND MEDICINE
2007-2009

Lilian Shiao-Yen Wu, Chair; Program Executive, Global University Relations, IBM Technology Strategy and Innovation
Alice M. Agogino, Roscoe and Elizabeth Hughes Professor of Mechanical Engineering, University of California, Berkeley
Florence B. Bonner, Senior Vice President for Research and Compliance, Howard University
Allan Fisher, Senior Vice President, Product Strategy and Development, Laureate Higher Education Group
June E. Osborn, President Emerita, Josiah Macy, Jr. Foundation
Vivian Pinn, Associate Director for Research on Women’s Health and Director, Office of Research on Women’s Health, National Institutes of Health
Pardis Sabeti, Assistant Professor, Department of Organismic and Evolutionary Biology, Harvard University
Lydia Villa-Komaroff, Board Member and Chief Scientific Officer, CytonomeST, LLC
Warren Washington, Senior Scientist & Section Head, National Center for Atmospheric Research
Susan Wessler, University of Georgia Foundation Chair in Biology, Department of Plant Biology, University of Georgia

Staff

Catherine Didion, Director (from March 1, 2007)
Peter Henderson, Director (October 15, 2005-March 1, 2007)
Jong-on Hahm, Director (until October 14, 2005)
John Sislin, Program Officer
Elizabeth Briggs, Senior Program Associate
Jessica Buono, Research Associate
Jacqueline Martin, Senior Program Assistant

Copyright National Academy of Sciences. All rights reserved.
This summary plus thousands more available at http://www.nap.edu
Preface

Difficult tasks are often very simply stated. This committee was asked by Congress to “conduct a study to assess gender differences in the careers of science, engineering, and mathematics (SEM) faculty, focusing on four-year institutions of higher education that award bachelor’s and graduate degrees. The study will build on the National Academies’ previous work and examine issues such as faculty hiring, promotion, tenure, and allocation of institutional resources including (but not limited to) laboratory space.” That such an assessment would be daunting was well understood by the committee. The importance of the study provided more than ample motivation to keep the committee engaged and focused on crafting an objective report that would advance our knowledge on the status of women academics in science and engineering at the nation’s top universities.

To address its charge, the committee drew on a large number of scholarly studies, survey data collected by federal agencies and professional societies among others, self-assessments conducted by universities—as well as a number of experts brought in to meet with the committee. After reviewing the above information, the committee determined to conduct two comprehensive surveys. These surveys were sent to the major research universities across the United States during 2004-2005. The surveys focused on biology, chemistry, civil and electrical engineering, mathematics, and physics. One focused on almost 500 departments in these disciplines, and the other was sent to more than 1,800 faculty. These surveys bring much needed additional information to the table. The survey of departments collected information on departmental characteristics, hiring, tenure and promotion decisions, and related policies. The survey of faculty focused on demographic characteristics, employment history, and institutional resources received. The committee was delighted with the response to the surveys. The departmental
survey had about an 85 percent response rate, and the faculty survey had about a 77 percent response rate. The committee extends its thanks to everyone who filled out the questionnaires, which were undoubtedly time consuming. Respondents were very open with their information, as they were promised confidentiality. While the data must remain restricted to maintain that confidentiality, we believe these data could be used in further studies for the benefit of the scientific community without violating the confidentiality of respondents.

A related point is that while the committee examined a tremendous amount of information, a comprehensive and conclusive assessment of faculty careers remains in the future. The committee has done all it can given its resources to advance our understanding of this important issue, but additional research and study remain. If it could, this committee would have continued expanding, refining, and enhancing its analysis. The committee trusts that others will be encouraged to pursue further some of the avenues that the committee has started down and to answer some of the questions that arose in this report, drawing on their own innovative approaches to examining the trajectory of academic careers of men and women.

Claude R. Canizares
Co-Chair
Sally E. Shaywitz
Co-Chair
Acknowledgments

This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the National Academies’ Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the process.

We wish to thank the following individuals for their review of this report: Robert Birgeneau, University of California, Berkeley; Claudia Goldin, Harvard University; Susan Graham, University of California, Berkeley; Jo Handelsman, University of Wisconsin; Maria Klawe, Harvey Mudd College; J. Scott Long, Indiana University; Colm O’Muircheartaigh, University of Chicago; Barbara Reskin, University of Washington; Johanna Levelt Sengers, National Institute of Standards and Technology; and Richard Zare, Stanford University.

Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations, nor did they see the final draft of the report before its release. The review of this report was overseen by Stephen Fienberg, Carnegie Mellon University and Mildred Dresselhaus, Massachusetts Institute of Technology. Appointed by the National Academies, they were responsible for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution.
We would like to thank all the faculty and departments who took the time to complete our surveys. We greatly appreciate the effort, and the report could not have been a success without their help. In addition, the committee would like to thank staff of the project for their assistance, including Charlotte Kuh, deputy executive director of the Policy and Global Affairs Division; Catherine Didion, the current director of the Committee on Women in Science, Engineering and Medicine (CWSEM); Michael Cohen, senior program officer of the Committee on National Statistics; Marilyn Baker, director for reports and communications for the Policy and Global Affairs Division; Jong-on Hahm, who managed the project as the former director of CWSEM; Peter Henderson, who took over as study director and interim director of CWSEM; John Sislin, program officer; Jim Voytuk, senior program officer and George Reinhart, former senior program officer for their assistance with data and surveys; Elizabeth Briggs; Jessica Buono; Jacqueline Martin; Amber Carrier; Melissa McCartney; Norman Bradburn, who consulted on the surveys and data; John Tsapogas for assistance with Survey of Doctorate Recipients data; Dan Heffron for assistance with National Survey of Postsecondary Faculty data; and Rachel Ivie, Roman Czujko, and everyone at the American Institute of Physics, who implemented the surveys.
Contents

Summary 1

1 Introduction 15
Why Disparities Matter, 16
The Committee’s Charge, 19
Approach and Scope, 19
Outline of Report, 29

2 Status of Women in Academic Science and Engineering in 2004 and 2005 31
Degrees Earned, 32
Faculty Representation, 33
Professional Activities and Climate, 36

3 Gender Differences in Academic Hiring 39
The Hiring Process, 40
Applications for Faculty Positions, 43
Selection for Interviews for S&E Jobs, 50
Offers Made, 56
Hires, 59
Faculty Perspective on Hiring, 61
Institutional Policies for Increasing the Diversity of Applicant Pools, 61
Summary of Findings, 64

Copyright National Academy of Sciences. All rights reserved.
This summary plus thousands more available at http://www.nap.edu
CONTENTS

4 Professional Activities, Institutional Resources, Climate, and Outcomes 70
Professional Activities, 73
Institutional Resources, 77
Climate, 84
Outcomes, 88
Summary of Findings, 110

5 Gender Differences in Tenure and Promotion 116
Tenure and Promotion Processes, 118
Equity in Tenure and Promotion Decisions, 121
Tenure and Promotion Awards, 124
Time in Rank, 134
Summary of Findings, 148

6 Key Findings and Recommendations 153

Appendixes
1-1 Biographical Information on Committee Members, 171
1-2 List of Research I Institutions, 178
1-3 Committee Meeting Agenda, 179
1-4 The Surveys, 181
1-5 Survey Instruments, 189
1-6 Departments in Survey, 216
2-1 Review of Literature and Relevant Research, 249
2-2 Previous Research on Factors Contributing to Gender Differences Among Faculty, 267
3-1 Review of Literature and Research on Factors Associated with a Higher Proportion of Female Applicants, 275
3-2 Estimated Adjusted Mean Effects and Differences for the Probability That There Are No Female Applicants, 284
3-3 Estimated Adjusted Mean Effects and Differences Based on the Modeled Probability of the Percentage of Applicants That Are Female, 285
3-4 Estimated Adjusted Mean Effects and Differences Based on the Modeled Probability of at Least One Female Candidate Interviewed, 287
3-5 Doctoral Degrees Awarded by All Doctoral-Granting Institutions, by Field, Gender, and Year, 289
3-6 Doctoral Degrees Awarded by Discipline and Gender for Research I Institutions, 1999-2003, 290
3-7 Marginal Mean and Variance of Transformed Response Variables, 291
3-8 Main Considerations for Taking a Position by Number of Respondents Saying “Yes”, 295
4-1 Distribution of Undergraduate Course Load for Faculty by Gender and Discipline, 296
4-2 Percentage of Faculty Members Who Do No Graduate Teaching, 298
4-3 Percentage of Faculty Members Receiving a Reduced Teaching Load When Hired, 299
4-4 Percentage of Faculty Members Who Served on an Undergraduate Thesis or Honors Committee, 300
4-5 Percentage of Faculty Members Who Served on and Chaired an Undergraduate Thesis or Honors Committee, 301
4-6 Distribution of Number of Graduate Thesis or Honors Committees for Research I Tenure and Tenure-Track Faculty, 302
4-7 Percentage of Time Spent in Administration or Committee Work on Campus and Service to the Profession Outside the University for Tenured and Tenure-Track Faculty at Research I Institutions, 303
4-8 Distribution of Number of Service Committees for Research I Tenure and Tenure-Track Faculty, 304
4-9 Mean Salary by Gender and Professorial Rank for Tenure and Tenure-Track Faculty in Research I Institutions, 305
4-10 Percentage of Tenured and Tenure-Track Faculty in Research I Institutions Receiving Summer Support, 306
4-11 Percentage of Tenured and Tenure-Track Faculty in Research I Institutions Receiving Travel Funds, 307
4-12 Median Square Footage of Lab Space of Faculty Who Report Doing Experimental Work, 308
4-13 Faculty Who Have Received More Lab Space Since Hire, 309
4-14 Percentage of Tenured and Tenure-Track Faculty in Research I Institutions Receiving Sufficient Equipment, 310
4-15 Number of Postdoctorate Students for Tenured and Tenure-Track Faculty in Research I Institutions, 311
4-16 Percentage of Tenured and Tenure-Track Faculty in Research I Institutions Receiving Sufficient Clerical Support, 312
4-17 Percentage of Faculty Members Stating That They Had a Mentor, 313
4-18 Distribution of the Number of Graduate Students for Tenured and Tenure-Track Faculty in Research I Institutions, 314
4-19 Mean Number of Articles Published in Refereed Journals Over the Past 3 Years for Tenured and Tenure-Track Faculty in Research I Institutions, 315
4-20a Estimated Probability of Having Grant Funding by Discipline, Gender, and Whether the Faculty Member Has an Assigned Mentor—Assistant Professors Only, 316
CONTENTS

4-20b Estimated Probability of Having Grant Funding by Discipline, Gender, and Whether the Faculty Member Has an Assigned Mentor—Associate Professors Only, 317

4-21 Percentage Faculty Missing Salary Data by Gender and Discipline, 318

4-22 Percentage of Tenured and Tenure-Track Faculty at Research I Institutions That Were Nominated for at Least One Award, 319

4-23 Percentage of Tenured and Tenure-Track Research I Faculty with Offers to Leave, 320

4-24 Percentage of Tenured and Tenure-Track Faculty at Research I Institutions Planning to Leave or Retire, 321

5-1 Knowledge of Tenure Procedures by Gender, Rank, and Presence of a Mentor, 322

5-2 Detailed Tenure Information from Departmental Survey, 324

5-3 Time Spent in Both Assistant and Associate Professorships, 325

5-4 Years Between Starting Employment and Achieving Associate Professor Status, by Gender, 326

5-5 Years Between Starting Employment and Achieving Full Professor Status, by Gender, 327

5-6 Patterns of Nonresponse for Tenure Decisions, 328

5-7 Patterns of Nonresponse for Promotion Decisions, 329

Bibliography

Index

330

353
List of Tables and Figures

TABLES

S-1 Representation of Women in Faculty Positions at Research I Institutions, by Rank and Field, (percent), 1995–2003, 6
S-2 Transitions From Ph.D. to Tenure-Track Positions, by Field at the Research I Institutions Surveyed, 7
2-1 Science and Engineering Doctorate Holders Employed in Academia as Full-time Senior Faculty, by Sex and Degree Field, 2003, 34
2-2 Science and Engineering Doctorate Holders Employed in Academia as Full-time Junior Faculty, by Sex and Degree Field, 2003, 34
3-1 Number of Tenured and Tenure-Track Positions with Complete Information About the Gender of Applicants, by Discipline, 46
3-2 Percentage of Women in the Doctoral Pool and Distribution of the Percentage of Women Among Job Applicants for Tenure-Track Positions, by Discipline, 47
3-3 Mean Percentage of Females Among Applicants and Among Interviewees in Each Discipline, 52
3-4 Percent of Positions For Which No Women Were Interviewed, by Type of Position, 53
3-5 Percent of First Offers, by Gender and Type of Position, 56
3-6 Distribution of Percentage of Female Interviews and Offers, by Discipline, 58
3-7 Percent of Candidates of Each Gender Who Received the First Offer and Gender of Candidates of Each Gender Who Eventually Accepted Each Tenure-Track Position, 60
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-8</td>
<td>First Offer and Person Hired for Tenured Position, Percent by Gender, 60</td>
</tr>
<tr>
<td>3-9</td>
<td>Steps Taken to Increase the Gender Diversity of the Candidate Pool, 64</td>
</tr>
<tr>
<td>3-10</td>
<td>Number of Policy Steps Taken by Departments, 65</td>
</tr>
<tr>
<td>4-1</td>
<td>Average Measures of Recent Research Productivity, by Gender, 92</td>
</tr>
<tr>
<td>4-2</td>
<td>Percentage of People Who Received Grant Funding by Gender, Rank of Faculty, and Mentor Status, 97</td>
</tr>
<tr>
<td>4-3</td>
<td>Satisfaction of Faculty with Employment, by Gender, 109</td>
</tr>
<tr>
<td>4-10</td>
<td>Percentage of Responding Departments that Decide Tenure and Promotion Together, by Discipline, 119</td>
</tr>
<tr>
<td>5-2</td>
<td>Number of Years Between Hiring and Tenure Decision, 120</td>
</tr>
<tr>
<td>5-3</td>
<td>Female Participation in Tenure and Promotion Committees, 122</td>
</tr>
<tr>
<td>5-4</td>
<td>Tenure Award Rates, by Gender and Discipline, 126</td>
</tr>
<tr>
<td>5-5</td>
<td>Promotion to Full Professor by Gender and Discipline, 128</td>
</tr>
<tr>
<td>5-6</td>
<td>Tracking Cohorts Entering the Tenure Track Through 7 Years: Pennsylvania State University, 135</td>
</tr>
<tr>
<td>5-7</td>
<td>Results of Faculty Reviews at 2, 4, and 6 Years Following Hire: Pennsylvania State University, 2004-2005, 136</td>
</tr>
<tr>
<td>5-8</td>
<td>Mean Number of Years Between Rank Achieved and First Faculty or Instructional Staff Job, by Gender, for Full-time Faculty at Research I Institutions, Fall 2003, 137</td>
</tr>
<tr>
<td>5-9</td>
<td>Mean Number of Months Spent as an Assistant Professor, 139</td>
</tr>
<tr>
<td>5-10</td>
<td>Mean Number of Months Between Receipt of Ph.D. and Promotion to Associate Professor, 140</td>
</tr>
<tr>
<td>5-11</td>
<td>Mean Number of Months Spent as an Associate Professor, 141</td>
</tr>
<tr>
<td>5-12</td>
<td>Results Obtained from a Cox Proportional Hazards Regression Analysis of 351 Cases That Had Complete Promotion and Covariate Information, 141</td>
</tr>
<tr>
<td>5-13</td>
<td>Number of Faculty by Gender and Rank Who Reported Stopping or Not Stopping the Tenure Clock or Who Did Not Respond to the Survey Question, 145</td>
</tr>
<tr>
<td>6-1</td>
<td>Representation of Women in Faculty Positions at Research I Institutions by Rank and Field (percent) 1995-2003, 155</td>
</tr>
<tr>
<td>6-2</td>
<td>Transitions from Ph.D. to Tenure-Track Positions by Field at the Research I Institution Surveyed, 156</td>
</tr>
</tbody>
</table>
LIST OF TABLES AND FIGURES

FIGURES

3-1 (a-c) Proportion of females among applicants to all tenured and tenure-track positions in Research I institutions, 44-45
3-2 Main considerations for selecting current position, by gender, 62
4-1 Mean percentage of time faculty spent on research and fund-raising, by gender, 74
4-2 Mean lab space reported by respondents, by gender and field, 82
4-3 Percentage of men and women reporting having access to the equipment they need to conduct their research, 83
4-4 Percentage of faculty reporting having access to the clerical support they need, by gender and field, 85
4-5 Inclusion in unit processes and culture, by gender and discipline, 86
4-6 Percentage of faculty responding that they had a mentor, by gender and field, 87
4-7 Mean number of sole or co-authored articles in refereed journals, by gender and discipline, 91
4-8 Percentage of faculty reporting having at least one research grant on which they served as a PI or Co-PI, by gender and field, 95
4-9 Histogram of the logarithm of grant amount, 98
4-10 Histogram of the logarithm of lab space, 100
5-1 Probability of tenure for male and female candidates as a function of the proportion of tenure-eligible women in the department, 132
5-2 Probability of tenure for male and female candidates as a function of the proportion of women in the department, 133
5-3 (a-d) Survival curves for male faculty who are currently full professors or associate professors and for female faculty who are currently full professors or associate professors, 142-144
5-4 (a-b) One minus the probability of promotion to full professor for males and females in biology and electrical engineering, 147-148